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Let X be a reflexive, strictly convex Banach space such that both X and X* have
Frechet differentiable norms, and let {Cn I be a sequence of non-empty closed
convex subsets of X. We prove that the sequence of best approximations 1p(x I Cn) I

of any x E X converges if and only if lim Cn exists and is not empty. We also
discuss measurability of closed convex set valued functions.

O. INTRODUCTION

Let X be a Banach space. If X is reflexive and strictly convex, then for
any non-empty closed convex subset C of X and x E X there exists a unique
best approximation p(x IC) of x in C. If every sequence {x n } C X which
weakly converges to some x E X and satisfies Ilxnll--; Ilxll as n --; ro
necessarily converges to x in the norm, we say that X has Property (H). If X
is reflexive, strictly convex and has Property (H), x f------> p(x I C) is norm-to
norm continuous. In this paper we investigate continuity of C f------> p(x I C).
This was first considered by Brosowski, Deutsch and Nurnberger 111. They
considered a family {Va} of subsets of normed linear space X parametrized
by a topological space and studied continuity of multivalued mappings
a f------> Va and a f------> P(x I Va)' P(x I Va) is the set of best approximations of x
in Va' On the other hand, our method is not parametrized.

Let {Cn} be a sequence of non-empty closed convex subsets of X. Mosco
18] defined lim Cn' We prove that if X is reflexive and strictly convex and
has Property (H), then for any x E X the sequence of best approximations
{p(x ICn)} converges whenever lim Cn exists and is not empty. This was
proved by Rao [9 J in which {Cn} is increasing with respect to set inclusion.
Conversely, if X has a Frechet differentiable norm, then lim Cn exists and is
not empty whenever the sequence {p(x I Cn)} of best approximations
converges for every x E X. Since the condition that X is reflexive and strictly
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convex and has Property (H) is equivalent to that X* has the Frechet
differentiable norm, if both X and X* have the Frechet differentiable norms,
the sequence {p(x ICn)} of best approximations of any x E X converges if
and only if lim Cn exists and is not empty. If X is an U-space (1 < p < 00),
it is the case that the above assertion is valid. The author [11 J has proved it
in which X is a Hilbert space and investigated the limit of a-fields in
probability measure spaces.

In the last section we define strong measurability of closed convex set
valued functions. In a certain Banach space it is equivalent to some
measurability conditions defined by Himmerberg [6].

1. NOTATIONS

Let X be a Banach space with norm II . II, S be the closed unit ball of X,
and (£ be the set of all, non-empty, closed convex subsets of X.

For any xEX and AcX we define d(x,A)=infyEAllx-YII and
P(x IA) = {y E A: Ilx - yll = d(x, A)}.

Remark (see, for example, Singer [!OJ). (i) Let 0 *A c X. Then
Id(x,A)-d(y,A)I:(llx-yll for any x, yEX. In particular, d(·,A) is
uniformly continuous;

(ii) P(x IC) consists of at most single element for any x E X and
C E (£ if and only if X is strictly convex (i.e., S is strictly convex);

(iii) P(x IC) is not a void set for any x E X and C E (£ if and only if
X is reflexive.

We consider some properties for X. Notations are due to Cudia [31 and
Day [4J.

(H) If a sequence {xn} C X weakly converges to x E X and II X n11--- II x II
as n--- 00, then Ilx-xnll---O as n--- 00.

(K) For any C E (£ the diameter of (C (J r . S) tends to 0 as r---;
d(O, C).

(F) X has the Frechet differentiable norm, i.e., for any xES there
exists limho(llx + t· yll-Ilxll)jt uniformly for yES.

The following assertions are equivalent (see Rao [9 J):

(i) X is strictly convex, reflexive, and has (H);

(ii) X has (K);

(iii) X* has the Frechet differentiable norm.

If X is strictly convex and reflexive, we denote by p(x IC) the unique
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element of P(x IC) for any x E X and C E [. Then p(. IC) is norm-to-weak
continuous. Moreover if X has (H) (hence X has (K)), it is norm-to-norm
continuous (see Singer [9 D.

2. THE LIMIT OF A SEQUENCE OF CLOSED CONVEX SETS

Let {Cn} be a sequence in [. Mosco [81 defined a strong lower limit
s-lim inf Cn as the set of all x E X such that there exist xn E Cn for almost all
n and it tends to x as n -4 00 in the norm, and a weak upper limit
w-Iim sup Cn as the set of all x E X such that there exist a subsequence {Cn' }

of {Cn} and x n' E Cn' for every n' and it tends to x as n' -400 in the weak
topology. The weak lower limit w-lim inf Cn and the strong upper limit
s-lim sup Cn are defined similarly, but we do not use them in this paper. If
s-lim inf Cn= w-lim sup Cn' then the common value is denoted by lim Cn'
and in this case all of the limits defined above coincide. The following
proposition is a direct consequence of the definition, and some other
elementary properties and examples are discussed in !8).

PROPOSITION 2.1. Let {Cn f be a sequence in [.

(i) s-Iim inf Cn= {x E X: d(x, Cn) -40 as n --+ 00 f;
(ii) s-liminfCnE[U~0f;

(iii) U~= I n;;c~m Cn c s-lim inf Cn c w-lim sup Cn c n~~ I co
U;;C~m Cn' where co means the closed convex hull.

THEOREM 2.2. Let {Cn f be a sequence in [.

(i) lim sup d(x, Cn) ~ d(x, s-lim inf Cn) for every x E X.

(ii) If C E [ satisfies lim sup d(x, Cn) ~ d(x, C) for every x E X, then
C c s-lim inf Cn'

We assume further X to be reflexive.

(iii) lim inf d(x, Cn) :> d(x, w-lim sup Cn) for every x E X.

(iv) If X is finite dimensional or has (F), and if C E [ satisfies
lim inf d(x, Cn) :> d(x, C) for every x E X, then C:=J w-lim sup Cn'

Proof (i) Let x E X be fixed. For any yEs-lim inf Cn there exists a
sequence {yn} such that y n-4 Y as n -4 00 and y n E Cn for every n. Hence

lim sup d(x, Cn) ~ lim Ilx - Ynll = Ilx - yll,

for any yEs-lim inf Cn' Thus lim sup d(x, Cn) ~ d(x, s-lim inf Cn)'
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(ii) Let C E [ satisfy lim sup d(x, Cn) <d(x, C) for every x EX.
Then for any x E C, lim sup d(x, Cn) = O. Therefore by Proposition 2.1 we
have the wanted result.

(iii) Assume that there exists x E X such that lim inf d(x, Cn) >
d(x,w-limsupCn). Let jCn,l be a subsequence of ICnf with limd(x,Cn )=
lim inf d(x, Cn)' Since X is reflexive, there exists xn' E P(x ICn) for every n'.
Then lxn,f is norm bounded because lim d(x, Cn') < 00. Hence by the
Banach-Alaoglu and Eberein-Smulian theorems there exists a subsequence
lxn"f of lxn,} which weakly converges to some x' E X. Then x' E
w-lim sup Cn • Therefore we have

d(x, w-lim sup Cn) > lim inf d(x, Cn) = lim Ilx - xn,,11 ~ Ilx -- x' Ii.

where the last inequality follows from weak lower semicontinuity of norm
II . II· This is a contradiction. Hence we have (iii).

Before proving (iv), we show some technical lemmas.

LEMMA 2.3. Let X be reflexive and C E [ with 0 E. C. Then x E
P( -,J., . x I C) for any x E P(O i C) and ,i, ~ -I.

Proof Let x E P(O IC). By Theorem 1.1 of Singer 110, p. 360 I, there
exists f E X* such that Ilfll = I and Re f(y) ~ Ilxll for any y E C. Then

Ref(y +;.. x) =, Ref(y) +,J., . Ref(x)

~ (I +,J.,). Ilxll = Ilx +,i, . xii,

for any y E C and ). ~ -I. Using once more the theorem mentioned above.
we have the lemma.

LEMMA 2.4. If X has (F), for any xEX\IOf and a sequence ~xllfcX

which weakly converges to 0 there exists 0 <() < I such that lim infn ii () . x +
(I - (J). xnli < II xii·

Proof We may assumelxll = 1 without loss of generality. Since X has
(F), X is smooth. Hence there uniquely exists f E X* with Ilfll = f(x) = I.
Then for any Y E X with Re f(y) < I the line segment [x, Y I intersects to
S\lxl. (This follows from the Hahn-Banach theorem.) Since {xnl weakly
converges to 0, we may assume that Re f(x n ) < I for every n. On the other
hand, if Ilxnll < I for infinitely many n, the lemma is trivial. Hence we may
assume that Ilxnl! ~ I for every n. Therefore there exists Yn E (x,xn ] with
II Ynil = 1. Then lim inf II x - Ynil> O. If it is not true, there exists a sub
sequence lYn'! of lYn} such that limllx-Yn,II=O. Hence, by the Frechet
differentiability of the norm II . II, it follows that



1 - f(x n ,)

Ilx-xn,1I

BEST APPROXIMATIONS

1 - f(Yn')

Ilx- Yn,1I

= Ilx + (Yn' - x)II-11 Yn,lI- f(Yn' - x) -> 0
IIYn,-xll
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as n -> 00. Since 1 - f(x n ,) -> 1 as n -> 00, lim Ilx - X n ' Ii = 00. But, since
jx - x n ~ is a weak converning sequence, by the uniform boundedness
theorem we have sUPn Ilx - x n II < 00. This is a contradiction. Thus putting

m = lim infllx - Ynll,

M = sup Ilx - xnll,

(J= 1- m/(2· M),

we have the lemma.

Proof of (iv). Let C E [ satisfy lim inf d(x, Cn) > d(x, C) for every
xEX. We fix any yEw-limsupCn. Then there exists a subsequence lCn'~

of 1Cn~ and Yn' E Cn' for every n' such that 1Yn' f weakly converges to y. We
shall show that Y belongs to C. By the parallel translation, it may be
assumed that Y = O. Hence it suffices to show that 0 E C. Now assume that
o~ C, and take = E P(O IC). Then = =1= O. Since for any x E X

lim infllx - Yn' II> lim inf d(x, Cn') > lim inf d(x, Cn) > d(x, C)

and by Lemma 2.3, = = P(-A . = IC) for any A> 0, we have

lim infllA' = + Yn,11 > d(-A' =, C) = (A + 1) ·11=11

for any A> O. Dividing both sides by I + A, we have

lim infll(J· = + (1 - (J). Yn,1I > 11=11

for any 0 <:; (J < 1. If X is finite dimensional, since 1Yn' f strongly converges
to 0, this is a contradiction. On the other hand, if X has (F), this also
contradicts Lemma 2.4. Thus we have 0 E C.

THEOREM 2.5. Let X be reflexive and 1Cnf be a sequence in [.

(i) If lim Cn exists, then d(x, Cn) tends to d(x, lim Cn) as n -> 00 for
every x E X.

(ii) If X is finite dimensional or has (F), and if there exists
C E [U 10} such that d(x, Cn) tends to d(x, C) as n -> 00 for every x E H,
then lim Cn= C.
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3. CONVERGENCE OF BEST ApPROXIMATIONS

In this section we assume X to be reflexive and strictly convex.

LEMMA 3.1. Let {Cn} be a sequence in 1£ such that s-lim inf Cn -=1= 0.
Then {p(x ICn)} is a norm bounded set for any x E X.

Proof Let y belong to s-lim inf Cn' Then there exists a sequence {yn}
such that Yn -> Y as n -> 00 and YnE Cn for every n. Since sup II YnII = M < 00

and for any x E H

IIp(x ICn)11 ~ IIp(x ICn) - xii + Ilxll

~ llYn -xii + Ilxll ~M + 2 ·llxll,

we have the lemma.

THEOREM 3.2. Let {Cn} be a sequence in 1£.

(i) If lim Cn exists and is not empty, then {p(x ICn)} weakly conveges
to p(x Ilim Cn)for every x E X. Moreover ifX has (H), the convergence is in
the norm.

(ii) If X is finite dimensional or has (F), and if {p(x ICn)f is a norm
converging sequence for every x E X, then lim Cn exists and {p(x ICn)f
converges to p(x Ilim Cn) for every x E X.

Proof (i) Let x E X be fixed. Since, by Lemma 3.1, {p(x ICn)} is norm
bounded, for any subsequence {p(x ICn')} of {p(x ICn)}, there exists a
subsequence {p(x ICn")} which weakly converges to some y E X. Then y E
w-lim sup Cn= lim Cn' For any z E lim Cn we have

Ilx - yll ~ lim infllx - p(x ICn,,)11

~ lim Ilx - p(z ICn,,)11 = Ilx - zll·

Therefore y = p(x I lim Cn)' Since any subsequence {p(x ICn')} of
{p(x ICn)} has a subsequence {p(x ICn")} which weakly converges to
p(x Ilim Cn)' {p(x ICn)} also weakly converges to p(x Ilim Cn)' On the other
hand, by Theorem 2.5, Ilx - p(x ICn)ll-> Ilx - p(x [lim Cn)11 as n -> 00.

Therefore, if X has (H), {p(x ICn)} converges to p(x Ilim Cn)'

(ii) We put C = s-lim inf Cn' If {p(x [Cn )} converges to y E X, then it
follows that for any z E C

Ilx - yll = lim Ilx - p(x ICn)11

~ lim Ilx - p(z ICn)11 = Ilx - zll,
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and that y = p(x I C). Hence d(x, Cn) tends to d(x, C) as n -t 00. By
Theorem 2.5(ii), we have lim Cn = C.

THEOREM 3.3. Suppose that X satisfies one of the following conditions:
(A) X is finite dimensional and strictly convex; or (B) both X and X* have
Frechet differentiable norms. Then for any sequence {Cn} C [ the following
assertions are equivalent:

(i) lim Cn exists and is not empty;

(ii) there exists C E [ such that d(x, Cn) tends to d(x, C) as n -t 00

for every x E X;

(iii) {p(x I Cn)} is a norm convergent sequence for every x E X.

Proof This is the direct consequence of Theorems 2.5 and 3.2.

4. MEASURABILITY OF CLOSED CONVEX SET VALUED FUNCTIONS

In this section let X be a separable Banach space and satisfy condition (A)
or (B) in Theorem 3.3.

THEOREM 4.1. [has a separable metric J such that J(Cn' C) -t 0 as
n -t 00 if and only if lim Cn = C '* 0.

Proof Let D = jxd be a countable dense subset of X. We define
Jk(C 1 , Cz) = Id(xk , C1) - d(xk , Cz)1 for every C 1 , Cz E [ and k. Then {c5d is
a family of semimetrics on X and separates points of X. Moreover, by
Theorem 2.5 we have that Jk(Cn , C) -t 0 as n -t 00 for every k if and only if
lim C n = C '* 0. Therefore, putting

for any CI' Cz E [, we have the theorem. Separability is proved as follows.
We define [D = {co {xk , ... , x k }: x k , ... , x k ED}. Let any C E [ be fixed.

I n I n

For any n we define Cn = {x E X: d(x, C) ,,:;; lin}. Then we easily see that
CnE [ for every nand Cn1C as n -t 00. Hence we have that lim Cn= C
and that J(Cn , C) -t 0 as n -t 00. On the other hand, for any n let Cn (i D =
{Xk , x k , ... } and C: = {xk , ... , x k } for every m. Since Cn(i D = Cn' C: TCnI 2 I n

as m -t 00 for every n. Hence we have that limm C: = Cn and that
J(C:, Cn) -t 0 as m -t 00 for every n. Therefore for any e > 0 we can find C:
with J(C:, C) ,,:;; e. Thus [D is a countable dense subset of [.

Remark. Let [b be the set of all norm bounded elements of [. It is well
known that [b has the so-called Hausdotff metric. If X is finite dimensional,

640/40/4-Z
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the topology induced by the Hausdorff metric is equal to the topology
induced by 15. But, if X is infinite dimensional, the former is really stronger
than the latter (see Mosco [8, Lemma 1.1 ]).

Let (D, E) be a measurable space. A function F: D --. (£ is called to be
simple if there exist a countable partition {A n} C E of D and {Cn} C (£ such
that F(w) = Cn if w E An' If there exists a sequence {Fn} of simple functions
and F(w) = lim FnCw) for any wED, we say F to be strongly measurable.

For any function F: D --. (£ U {0} we define D(F) = {w E D: F(w) *- 0f
and call it the domain of F.

THEOREM 4.2. For any function F: D --. (£ U {0} the following assertions
are equivalent:

(i) F is strongly measurable;

(ii) D(F) E E and p(x IF(·)) is strongly measurable on D(F)for every
x E X in the sense of Hille and Phillips [5];

(iii) d(x, F(.)) is measurable for every x E X;

(iv) F is (E, B«(£))-measurable, where B(I.t) is the Borel field on (£

induced by metric 6.

Proof (i) =:> (ii) Let {Fn} be a sequence of simple functions with
F(w) = lim Fn(w) for any wED. Then by Theorem 2.5(i) we have

D(F) = {wE.o:d(O,F(w))* oo}

= {w E.o: lim IIp(O I Fn(w))11 *- oo}.

Since II p(O IFn(· ))11 is measurable for every n, it follows that D(F) E E. By
Theorem 3.2 for any x E X and wE D(F), {p(x IFn(w))} converges to
p(x IF(w)). Sincep(xIFn(·)) is countably valued for everyn,p(xIF(.)) is
strongly measurable.

(ii) =:> (iii) Since d(x, F(w)) = II x - p(x IF(w ))11 for every x E X and
w E D(F), this is trivial.

(iii) =:> (iv) Let Gr(C) be any open ball with diameter r and at center
CE (£. Then

By the assumption, t5k(F(·), C) is measurable for every k. Hence
F-1(Gr(C)) E E, and we have (iv).

(iv) =:> (i) Let (£D = {Ck } be a countable dense subsets of (£. Then for
any e > 0 and Ck E (£D we define A(e, k) = {w E D: a(Ck , F(w)) ~ e}.
Moreover we define B(e, k) =A(e, k)\U7:i A(e, i) for every k and
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F
6
(w) = Ck if wE B(e, k). Then F

6
is a simple function and

(5(F/w ), F(w)) -+ 0 as e -+ 0 and lim6~oF6(w) = F(w) for any wE Q. Thus F
is strongly measurable.
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