Convergence of Best Approximations in a Smooth Banach Space

ΜΑΚΟΤΟ ΤSUKADA

Department of Information Sciences, Science University of Tokyo, Noda City, Chiba 278, Japan

Communicated by Oved Shisha

Received March 26, 1982

Let X be a reflexive, strictly convex Banach space such that both X and X^* have Fréchet differentiable norms, and let $\{C_n\}$ be a sequence of non-empty closed convex subsets of X. We prove that the sequence of best approximations $\{p(x | C_n)\}$ of any $x \in X$ converges if and only if $\lim C_n$ exists and is not empty. We also discuss measurability of closed convex set valued functions.

0. INTRODUCTION

Let X be a Banach space. If X is reflexive and strictly convex, then for any non-empty closed convex subset C of X and $x \in X$ there exists a unique best approximation p(x | C) of x in C. If every sequence $\{x_n\} \subset X$ which weakly converges to some $x \in X$ and satisfies $||x_n|| \to ||x||$ as $n \to \infty$ necessarily converges to x in the norm, we say that X has Property (H). If X is reflexive, strictly convex and has Property (H), $x \mapsto p(x | C)$ is norm-tonorm continuous. In this paper we investigate continuity of $C \mapsto p(x | C)$. This was first considered by Brosowski, Deutsch and Nürnberger [1]. They considered a family $\{V_a\}$ of subsets of normed linear space X parametrized by a topological space and studied continuity of multivalued mappings $a \mapsto V_a$ and $a \mapsto P(x | V_a)$. $P(x | V_a)$ is the set of best approximations of x in V_a . On the other hand, our method is not parametrized.

Let $\{C_n\}$ be a sequence of non-empty closed convex subsets of X. Mosco [8] defined $\lim C_n$. We prove that if X is reflexive and strictly convex and has Property (H), then for any $x \in X$ the sequence of best approximations $\{p(x | C_n)\}$ converges whenever $\lim C_n$ exists and is not empty. This was proved by Rao [9] in which $\{C_n\}$ is increasing with respect to set inclusion. Conversely, if X has a Fréchet differentiable norm, then $\lim C_n$ exists and is not empty whenever the sequence $\{p(x | C_n)\}$ of best approximations converges for every $x \in X$. Since the condition that X is reflexive and strictly

MAKOTO TSUKADA

convex and has Property (H) is equivalent to that X^* has the Fréchet differentiable norm, if both X and X^* have the Fréchet differentiable norms, the sequence $\{p(x | C_n)\}$ of best approximations of any $x \in X$ converges if and only if $\lim C_n$ exists and is not empty. If X is an L^p -space $(1 , it is the case that the above assertion is valid. The author [11] has proved it in which X is a Hilbert space and investigated the limit of <math>\sigma$ -fields in probability measure spaces.

In the last section we define strong measurability of closed convex set valued functions. In a certain Banach space it is equivalent to some measurability conditions defined by Himmerberg [6].

1. NOTATIONS

Let X be a Banach space with norm $\|\cdot\|$, S be the closed unit ball of X, and \mathfrak{C} be the set of all, non-empty, closed convex subsets of X.

For any $x \in X$ and $A \subset X$ we define $d(x, A) = \inf_{y \in A} ||x - y||$ and $P(x | A) = \{y \in A : ||x - y|| = d(x, A)\}.$

Remark (see, for example, Singer [10]). (i) Let $\emptyset \neq A \subset X$. Then $|d(x, A) - d(y, A)| \leq ||x - y||$ for any $x, y \in X$. In particular, $d(\cdot, A)$ is uniformly continuous;

(ii) P(x | C) consists of at most single element for any $x \in X$ and $C \in \mathfrak{C}$ if and only if X is strictly convex (i.e., S is strictly convex);

(iii) P(x | C) is not a void set for any $x \in X$ and $C \in \mathfrak{C}$ if and only if X is reflexive.

We consider some properties for X. Notations are due to Cudia [3] and Day [4].

(H) If a sequence $\{x_n\} \subset X$ weakly converges to $x \in X$ and $||x_n|| \to ||x||$ as $n \to \infty$, then $||x - x_n|| \to 0$ as $n \to \infty$.

(K) For any $C \in \mathfrak{C}$ the diameter of $(C \cap r \cdot S)$ tends to 0 as $r \to d(0, C)$.

(F) X has the Fréchet differentiable norm, i.e., for any $x \in S$ there exists $\lim_{t\to 0} (||x+t \cdot y|| - ||x||)/t$ uniformly for $y \in S$.

The following assertions are equivalent (see Rao [9]):

- (i) X is strictly convex, reflexive, and has (H);
- (ii) X has (K);
- (iii) X^* has the Fréchet differentiable norm.

If X is strictly convex and reflexive, we denote by p(x | C) the unique

element of P(x | C) for any $x \in X$ and $C \in \mathfrak{C}$. Then $p(\cdot | C)$ is norm-to-weak continuous. Moreover if X has (H) (hence X has (K)), it is norm-to-norm continuous (see Singer [9]).

2. THE LIMIT OF A SEQUENCE OF CLOSED CONVEX SETS

Let $\{C_n\}$ be a sequence in \mathfrak{C} . Mosco [8] defined a strong lower limit s-lim inf C_n as the set of all $x \in X$ such that there exist $x_n \in C_n$ for almost all n and it tends to x as $n \to \infty$ in the norm, and a weak upper limit w-lim sup C_n as the set of all $x \in X$ such that there exist a subsequence $\{C_{n'}\}$ of $\{C_n\}$ and $x_{n'} \in C_{n'}$ for every n' and it tends to x as $n' \to \infty$ in the weak topology. The weak lower limit w-lim inf C_n and the strong upper limit s-lim sup C_n are defined similarly, but we do not use them in this paper. If s-lim inf $C_n =$ w-lim sup C_n , then the common value is denoted by lim C_n , and in this case all of the limits defined above coincide. The following proposition is a direct consequence of the definition, and some other elementary properties and examples are discussed in [8].

PROPOSITION 2.1. Let $\{C_n\}$ be a sequence in \mathfrak{C} .

- (i) s-lim inf $C_n = \{x \in X : d(x, C_n) \to 0 \text{ as } n \to \infty\};$
- (ii) s-lim inf $C_n \in \mathfrak{C} \cup \{\emptyset\};$

(iii) $\overline{\bigcup_{m=1}^{\infty}\bigcap_{n=m}^{\infty}C_n} \subset \text{s-lim inf } C_n \subset \text{w-lim sup } C_n \subset \bigcap_{m=1}^{\infty} \overline{\text{co}}$ $\bigcup_{n=m}^{\infty}C_n$, where $\overline{\text{co}}$ means the closed convex hull.

THEOREM 2.2. Let $\{C_n\}$ be a sequence in \mathfrak{C} .

(i) $\limsup d(x, C_n) \leq d(x, s-\liminf C_n)$ for every $x \in X$.

(ii) If $C \in \mathfrak{C}$ satisfies $\limsup d(x, C_n) \leq d(x, C)$ for every $x \in X$, then $C \subset$ s- $\liminf C_n$.

We assume further X to be reflexive.

(iii) $\lim \inf d(x, C_n) \ge d(x, w-\lim \sup C_n)$ for every $x \in X$.

(iv) If X is finite dimensional or has (F), and if $C \in \mathfrak{C}$ satisfies lim inf $d(x, C_n) \ge d(x, C)$ for every $x \in X$, then $C \supset$ w-lim sup C_n .

Proof. (i) Let $x \in X$ be fixed. For any $y \in$ s-lim inf C_n there exists a sequence $\{y_n\}$ such that $y_n \to y$ as $n \to \infty$ and $y_n \in C_n$ for every *n*. Hence

 $\limsup d(x, C_n) \le \lim ||x - y_n|| = ||x - y||,$

for any $y \in$ s-lim inf C_n . Thus lim sup $d(x, C_n) \leq d(x, s-\text{lim inf } C_n)$.

(ii) Let $C \in \mathfrak{C}$ satisfy $\limsup d(x, C_n) \leq d(x, C)$ for every $x \in X$. Then for any $x \in C$, $\limsup d(x, C_n) = 0$. Therefore by Proposition 2.1 we have the wanted result.

(iii) Assume that there exists $x \in X$ such that $\liminf d(x, C_n) > d(x, w-\limsup C_n)$. Let $\{C_{n'}\}$ be a subsequence of $\{C_n\}$ with $\lim d(x, C_n) = \liminf d(x, C_n)$. Since X is reflexive, there exists $x_{n'} \in P(x | C_{n'})$ for every n'. Then $\{x_{n'}\}$ is norm bounded because $\lim d(x, C_{n'}) < \infty$. Hence by the Banach-Alaoglu and Eberein-Šmulian theorems there exists a subsequence $\{x_{n''}\}$ of $\{x_{n''}\}$ which weakly converges to some $x' \in X$. Then $x' \in w$ -lim sup C_n . Therefore we have

 $d(x, \text{ w-lim sup } C_n) > \lim \inf d(x, C_n) = \lim ||x - x_n|| \ge ||x - x'||.$

where the last inequality follows from weak lower semicontinuity of norm $\|\cdot\|$. This is a contradiction. Hence we have (iii).

Before proving (iv), we show some technical lemmas.

LEMMA 2.3. Let X be reflexive and $C \in \mathfrak{C}$ with $0 \notin C$. Then $x \in P(-\lambda \cdot x \mid C)$ for any $x \in P(0 \mid C)$ and $\lambda \ge -1$.

Proof. Let $x \in P(0 | C)$. By Theorem 1.1 of Singer [10, p. 360], there exists $f \in X^*$ such that ||f|| = 1 and Re $f(y) \ge ||x||$ for any $y \in C$. Then

$$\operatorname{Re} f(y + \lambda \cdot x) = \operatorname{Re} f(y) + \lambda \cdot \operatorname{Re} f(x)$$
$$\geq (1 + \lambda) \cdot ||x|| = ||x + \lambda \cdot x||,$$

for any $y \in C$ and $\lambda \ge -1$. Using once more the theorem mentioned above, we have the lemma.

LEMMA 2.4. If X has (F), for any $x \in X \setminus \{0\}$ and a sequence $\{x_n\} \subset X$ which weakly converges to 0 there exists $0 \leq \theta < 1$ such that $\liminf_n ||\theta \cdot x + (1-\theta) \cdot x_n|| < ||x||$.

Proof. We may assume |x|| = 1 without loss of generality. Since X has (F), X is smooth. Hence there uniquely exists $f \in X^*$ with ||f|| = f(x) = 1. Then for any $y \in X$ with $\operatorname{Re} f(y) < 1$ the line segment [x, y] intersects to $S \setminus \{x\}$. (This follows from the Hahn-Banach theorem.) Since $\{x_n\}$ weakly converges to 0, we may assume that $\operatorname{Re} f(x_n) < 1$ for every n. On the other hand, if $||x_n|| < 1$ for infinitely many n, the lemma is trivial. Hence we may assume that $||x_n|| \ge 1$ for every n. Therefore there exists $y_n \in (x, x_n]$ with $||y_n|| = 1$. Then $\liminf ||x - y_n|| > 0$. If it is not true, there exists a subsequence $\{y_{n'}\}$ of $\{y_n\}$ such that $\lim ||x - y_n|| = 0$. Hence, by the Fréchet differentiability of the norm $|| \cdot ||$, it follows that

$$\frac{1 - f(x_{n'})}{\|x - x_{n'}\|} = \frac{1 - f(y_{n'})}{\|x - y_{n'}\|}$$
$$= \frac{\|x + (y_{n'} - x)\| - \|y_{n'}\| - f(y_{n'} - x)}{\|y_{n'} - x\|} \to 0$$

as $n \to \infty$. Since $1 - f(x_{n'}) \to 1$ as $n \to \infty$, $\lim ||x - x_{n'}|| = \infty$. But, since $\{x - x_n\}$ is a weak converning sequence, by the uniform boundedness theorem we have $\sup_n ||x - x_n|| < \infty$. This is a contradiction. Thus putting

$$m = \liminf \|x - y_n\|,$$

$$M = \sup \|x - x_n\|,$$

$$\theta = 1 - m/(2 \cdot M),$$

we have the lemma.

Proof of (iv). Let $C \in \mathfrak{C}$ satisfy $\liminf d(x, C_n) \ge d(x, C)$ for every $x \in X$. We fix any $y \in w$ -lim sup C_n . Then there exists a subsequence $\{C_n\}$ of $\{C_n\}$ and $y_n \in C_n$ for every n' such that $\{y_n\}$ weakly converges to y. We shall show that y belongs to C. By the parallel translation, it may be assumed that y = 0. Hence it suffices to show that $0 \in C$. Now assume that $0 \notin C$, and take $z \in P(0 \mid C)$. Then $z \neq 0$. Since for any $x \in X$

$$\liminf \|x - y_n\| \ge \liminf d(x, C_n) \ge \liminf d(x, C_n) \ge d(x, C)$$

and by Lemma 2.3, $z = P(-\lambda \cdot z \mid C)$ for any $\lambda \ge 0$, we have

$$\liminf \|\lambda \cdot z + y_{n'}\| \ge d(-\lambda \cdot z, C) = (\lambda + 1) \cdot \|z\|$$

for any $\lambda \ge 0$. Dividing both sides by $1 + \lambda$, we have

$$\lim \inf \|\theta \cdot z + (1-\theta) \cdot y_{n'}\| \ge \|z\|$$

for any $0 \le \theta < 1$. If X is finite dimensional, since $\{y_{n'}\}$ strongly converges to 0, this is a contradiction. On the other hand, if X has (F), this also contradicts Lemma 2.4. Thus we have $0 \in C$.

THEOREM 2.5. Let X be reflexive and $\{C_n\}$ be a sequence in \mathfrak{C} .

(i) If $\lim C_n$ exists, then $d(x, C_n)$ tends to $d(x, \lim C_n)$ as $n \to \infty$ for every $x \in X$.

(ii) If X is finite dimensional or has (F), and if there exists $C \in \mathfrak{C} \cup \{\emptyset\}$ such that $d(x, C_n)$ tends to d(x, C) as $n \to \infty$ for every $x \in H$, then $\lim C_n = C$.

MAKOTO TSUKADA

3. CONVERGENCE OF BEST APPROXIMATIONS

In this section we assume X to be reflexive and strictly convex.

LEMMA 3.1. Let $\{C_n\}$ be a sequence in \mathfrak{C} such that s-lim inf $C_n \neq \emptyset$. Then $\{p(x \mid C_n)\}$ is a norm bounded set for any $x \in X$.

Proof. Let y belong to s-lim inf C_n . Then there exists a sequence $\{y_n\}$ such that $y_n \to y$ as $n \to \infty$ and $y_n \in C_n$ for every n. Since $\sup ||y_n|| = M < \infty$ and for any $x \in H$

$$\| p(x \mid C_n) \| \leq \| p(x \mid C_n) - x \| + \| x \|$$
$$\leq \| y_n - x \| + \| x \| \leq M + 2 \cdot \| x \|$$

we have the lemma.

THEOREM 3.2. Let $\{C_n\}$ be a sequence in \mathfrak{C} .

(i) If $\lim C_n$ exists and is not empty, then $\{p(x | C_n)\}$ weakly conveges to $p(x | \lim C_n)$ for every $x \in X$. Moreover if X has (H), the convergence is in the norm.

(ii) If X is finite dimensional or has (F), and if $\{p(x | C_n)\}$ is a norm converging sequence for every $x \in X$, then $\lim C_n$ exists and $\{p(x | C_n)\}$ converges to $p(x | \lim C_n)$ for every $x \in X$.

Proof. (i) Let $x \in X$ be fixed. Since, by Lemma 3.1, $\{p(x | C_n)\}$ is norm bounded, for any subsequence $\{p(x | C_{n'})\}$ of $\{p(x | C_n)\}$, there exists a subsequence $\{p(x | C_{n''})\}$ which weakly converges to some $y \in X$. Then $y \in$ w-lim sup $C_n = \lim C_n$. For any $z \in \lim C_n$ we have

$$||x - y|| \le \liminf ||x - p(x | C_{n''})||$$

 $\le \lim ||x - p(z | C_{n''})|| = ||x - z||.$

Therefore $y = p(x | \lim C_n)$. Since any subsequence $\{p(x | C_n)\}$ of $\{p(x | C_n)\}$ has a subsequence $\{p(x | C_{n''})\}$ which weakly converges to $p(x | \lim C_n)$, $\{p(x | C_n)\}$ also weakly converges to $p(x | \lim C_n)$. On the other hand, by Theorem 2.5, $||x - p(x | C_n)|| \rightarrow ||x - p(x | \lim C_n)||$ as $n \rightarrow \infty$. Therefore, if X has (H), $\{p(x | C_n)\}$ converges to $p(x | \lim C_n)$.

(ii) We put C = s-lim inf C_n . If $\{p(x | C_n)\}$ converges to $y \in X$, then it follows that for any $z \in C$

$$||x - y|| = \lim ||x - p(x | C_n)||$$

$$\leq \lim ||x - p(z | C_n)|| = ||x - z||,$$

and that y = p(x | C). Hence $d(x, C_n)$ tends to d(x, C) as $n \to \infty$. By Theorem 2.5(ii), we have $\lim C_n = C$.

THEOREM 3.3. Suppose that X satisfies one of the following conditions: (A) X is finite dimensional and strictly convex; or (B) both X and X* have Fréchet differentiable norms. Then for any sequence $\{C_n\} \subset \mathfrak{C}$ the following assertions are equivalent:

(i) $\lim C_n$ exists and is not empty;

(ii) there exists $C \in \mathbb{C}$ such that $d(x, C_n)$ tends to d(x, C) as $n \to \infty$ for every $x \in X$;

(iii) $\{p(x \mid C_n)\}$ is a norm convergent sequence for every $x \in X$.

Proof. This is the direct consequence of Theorems 2.5 and 3.2.

4. MEASURABILITY OF CLOSED CONVEX SET VALUED FUNCTIONS

In this section let X be a separable Banach space and satisfy condition (A) or (B) in Theorem 3.3.

THEOREM 4.1. \mathfrak{C} has a separable metric δ such that $\delta(C_n, C) \to 0$ as $n \to \infty$ if and only if $\lim C_n = C \neq \emptyset$.

Proof. Let $D = \{x_k\}$ be a countable dense subset of X. We define $\delta_k(C_1, C_2) = |d(x_k, C_1) - d(x_k, C_2)|$ for every $C_1, C_2 \in \mathfrak{C}$ and k. Then $\{\delta_k\}$ is a family of semimetrics on X and separates points of X. Moreover, by Theorem 2.5 we have that $\delta_k(C_n, C) \to 0$ as $n \to \infty$ for every k if and only if $\lim C_n = C \neq \emptyset$. Therefore, putting

$$\delta(C_1, C_2) = \sum_{k=1}^{\infty} \frac{\delta_k(C_1, C_2)}{2^k \cdot (1 + \delta_k(C_1, C_2))},$$

for any C_1 , $C_2 \in \mathfrak{C}$, we have the theorem. Separability is proved as follows. We define $\mathfrak{C}_D = \{\overline{\operatorname{co}} \{x_{k_1}, \dots, x_{k_n}\}: x_{k_1}, \dots, x_{k_n} \in D\}$. Let any $C \in \mathfrak{C}$ be fixed. For any *n* we define $C_n = \{x \in X: d(x, C) \leq 1/n\}$. Then we easily see that $C_n \in \mathfrak{C}$ for every *n* and $C_n \downarrow C$ as $n \to \infty$. Hence we have that $\lim C_n = C$ and that $\delta(C_n, C) \to 0$ as $n \to \infty$. On the other hand, for any *n* let $C_n \cap D = \{x_{k_1}, x_{k_2}, \dots\}$ and $C_n^m = \{x_{k_1}, \dots, x_{k_n}\}$ for every *m*. Since $\overline{C_n \cap D} = C_n, C_n^m \uparrow C_n$ as $m \to \infty$ for every *n*. Hence we have that $\lim_m C_n^m = C_n$ and that $\delta(C_n^m, C_n) \to 0$ as $m \to \infty$ for every *n*. Therefore for any $\varepsilon > 0$ we can find C_n^m with $\delta(C_n^m, C) \leq \varepsilon$. Thus \mathfrak{C}_D is a countable dense subset of \mathfrak{C} .

Remark. Let \mathfrak{C}^b be the set of all norm bounded elements of \mathfrak{C} . It is well known that \mathfrak{C}^b has the so-called *Hausdorff metric*. If X is finite dimensional,

the topology induced by the Hausdorff metric is equal to the topology induced by δ . But, if X is infinite dimensional, the former is really stronger than the latter (see Mosco [8, Lemma 1.1]).

Let (Ω, Σ) be a measurable space. A function $F: \Omega \to \mathfrak{C}$ is called to be *simple* if there exist a countable partition $\{A_n\} \subset \Sigma$ of Ω and $\{C_n\} \subset \mathfrak{C}$ such that $F(\omega) = C_n$ if $\omega \in A_n$. If there exists a sequence $\{F_n\}$ of simple functions and $F(\omega) = \lim F_n(\omega)$ for any $\omega \in \Omega$, we say F to be *strongly measurable*.

For any function $F: \Omega \to \mathfrak{C} \cup \{\emptyset\}$ we define $D(F) = \{\omega \in \Omega: F(\omega) \neq \emptyset\}$ and call it the *domain* of F.

THEOREM 4.2. For any function $F: \Omega \to \mathfrak{C} \cup \{\emptyset\}$ the following assertions are equivalent:

(i) F is strongly measurable;

(ii) $D(F) \in \Sigma$ and $p(x | F(\cdot))$ is strongly measurable on D(F) for every $x \in X$ in the sense of Hille and Phillips [5];

(iii) $d(x, F(\cdot))$ is measurable for every $x \in X$;

(iv) F is $(\Sigma, \mathbf{B}(\mathfrak{C}))$ -measurable, where $\mathbf{B}(\mathfrak{C})$ is the Borel field on \mathfrak{C} induced by metric δ .

Proof. (i) \Rightarrow (ii) Let $\{F_n\}$ be a sequence of simple functions with $F(\omega) = \lim F_n(\omega)$ for any $\omega \in \Omega$. Then by Theorem 2.5(i) we have

$$D(F) = \{ \omega \in \Omega \colon d(0, F(\omega)) \neq \infty \}$$
$$= \{ \omega \in \Omega \colon \lim \| p(0 \mid F_n(\omega)) \| \neq \infty \}.$$

Since $||p(0|F_n(\cdot))||$ is measurable for every *n*, it follows that $D(F) \in \Sigma$. By Theorem 3.2 for any $x \in X$ and $\omega \in D(F)$, $\{p(x | F_n(\omega))\}$ converges to $p(x | F(\omega))$. Since $p(x | F_n(\cdot))$ is countably valued for every *n*, $p(x | F(\cdot))$ is strongly measurable.

(ii) \Rightarrow (iii) Since $d(x, F(\omega)) = ||x - p(x | F(\omega))||$ for every $x \in X$ and $\omega \in D(F)$, this is trivial.

(iii) \Rightarrow (iv) Let $G_r(C)$ be any open ball with diameter r and at center $C \in \mathfrak{C}$. Then

$$F^{-1}(G_r(C)) = \left\{ \omega \in \Omega \colon \sum_{k=1}^{\infty} \frac{\delta_k(F(\omega), C)}{2^k \cdot (1 + \delta_k(F(\omega), C))} < r \right\}.$$

By the assumption, $\delta_k(F(\cdot), C)$ is measurable for every k. Hence $F^{-1}(G_r(C)) \in \Sigma$, and we have (iv).

(iv) \Rightarrow (i) Let $\mathfrak{C}_D = \{C_k\}$ be a countable dense subsets of \mathfrak{C} . Then for any $\varepsilon > 0$ and $C_k \in \mathfrak{C}_D$ we define $A(\varepsilon, k) = \{\omega \in \Omega: \delta(C_k, F(\omega)) \leq \varepsilon\}$. Moreover we define $B(\varepsilon, k) = A(\varepsilon, k) \setminus \bigcup_{i=1}^{k-1} A(\varepsilon, i)$ for every k and

BEST APPROXIMATIONS

 $F_{\varepsilon}(\omega) = C_k$ if $\omega \in B(\varepsilon, k)$. Then F_{ε} is a simple function and $\delta(F_{\varepsilon}(\omega), F(\omega)) \to 0$ as $\varepsilon \to 0$ and $\lim_{\varepsilon \to 0} F_{\varepsilon}(\omega) = F(\omega)$ for any $\omega \in \Omega$. Thus F is strongly measurable.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Professor H. Umegaki for his valuable advice and constant encouragement.

References

- 1. B. BROSOWSKI, F. DEUTSCH, AND G. NÜRNBERGER, Parametric approximation, J. Approx. Theory 29 (1980), 261-277.
- 2. H. D. BRUNK, Conditional expectation given a σ -lattice and applications, Ann. Math. Statist. **36** (1965), 1339–1350.
- 3. D. F. CUDIA, Rotundity, Proc. Symp. Pure Math. 7 (1963), 73-97.
- 4. M. M. DAY, "Normed Linear Spaces," 3rd ed., Springer-Verlag, Berlin, 1973.
- E. HILLE AND R. S. PHILLIPS, "Functional Analysis and Semigroups," 2nd ed., Amer. Math. Soc., Providence, R. I., 1957.
- 6. C. J. HIMMELBERG, Measurable relations, Fund. Math. 87 (1975), 53-72.
- 7. H. KUDŌ, A note on the strong convergence of σ -algebras, Ann. Prob. 2 (1974), 76–83.
- U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3 (1969), 510-585.
- 9. M. M. RAO, Prediction sequences in smooth Banach spaces, Ann. Inst. Henri Poincaré 8 (1972), 319-332.
- I. SINGER, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin, 1973.
- 11. M. TSUKADA, Convergence of closed convex sets and σ -fields, Z. Wahrsch. Verw. Gebiete 62 (1983), 137–146.
- M. TSUKADA, The strong limit of von Neumann subalgebras with conditional expectations, preprint, 1983.